Super Uranophiles: Application to Highly Effective Solvent Extraction of Uranyl Ion in the Presence of Methyltrioctylammonium Chloride Masashi Nishida, Miwako Sonoda, Daido Ishii, and Isao Yoshida* Department of Applied Chemistry, Kumamoto Institute of Technology, Ikeda, Kumamoto 860-0082 (Received August 4, 1999; CL-990687) By using hydroxycalix[n]arene-p-sulfonates, $H_j \mathbf{1}_n^{n-}$ (n=6 and 8) known as super uranophiles, uranyl ion, UO_2^{2+} , in aqueous solution was efficiently extracted by chloroform in the presence of methyltrioctylammonium chloride, MTA⁺Cl⁻. The extracted species were found to be the ionic associates, $[(UO_2^{2+})(\mathbf{1}_6^{8-})(H^+)_3](MTA^+)_{11}$. Of a series of hydroxycalix[n]arene-p-sulfonates, $H_j \mathbf{1_n}^{n}$ -, hydroxycalix[6]arene-p-sulfonate ion, $H_2 \mathbf{1_6}^{6}$ -, has been reported to be a super uranophile, 1,2 i.e., a reagent with an extra high selective reactivity for uranyl ion, $UO_2^{2^+}$. Recently we found that the octamer homologue, $H_4 \mathbf{1_8}^{8}$ is another uranophile, 3,4 having higher stability and selectivity for $UO_2^{2^+}$ than $H_2 \mathbf{1_6}^{6^-}$, and that $H_j \mathbf{1_n}^{n^-}$ (n=4,8; j=n/2, n=6; j=2) functions as a metal ligand because of its hydroxyl groups arranged on the lower rim of the macrocyclic molecule. It can be extracted with a lipophilic ammonium ion, such as MTA+ by chloroform through formation of ionic associations with (n+i) moles of MTA+ for n moles of sulfonate groups, and i moles of de-protonated hydroxyl groups, according to Eq.1. The value i varies with pH in the range of the value j.5 $$\begin{aligned} & H_{j}\mathbf{1}_{n}^{n}_{w}^{-} + (n+i)MTA^{+}Cl_{o}^{-} \rightleftarrows \\ & & H_{i+i}\mathbf{1}_{n}(MTA)_{n+io} + n \ Cl_{w}^{-} + i \ HCl_{w} \quad (i \leq j) \end{aligned} \tag{1}$$ In Eq.1, w and o denote aqueous and organic phases, respectively. It is expected that the ionic associate in chloroform can still coordinate with a specific metal ion using its associating and remaining hydroxyl groups. To construct a new extraction system for the determination and separation of metal ions, we previously applied this system to the solvent extraction of Mn²⁺, and found that H₂1₄⁴⁻ can extract Mn²⁺ selectively in the presence of foreign metal ions.^{6,7} In the present study, we applied this system to the solvent extraction of UO₂²⁺ using super uranophiles. Na_nH₁1_n was obtained from Sugai Kagaku Co. (Wakayama Japan) and used after recrystallization from methanol-water solution. After dissolving it in water to make **Scheme1.** Hydroxycalix[n]arene-p-sulfonate ions, $H_j \mathbf{1_n}^{n-}$ and methyltrioctylammoium chloride, MTA+Cl-. a 0.01 M (M= mol dm⁻³) stock solution, the concentration was standardized by pH titration using standard 0.1 M NaOH. MTA⁺Cl⁻ was obtained from Dojindo Laboratories Co. (Kumamoto Japan), dissolved in chloroform, and its concentration was determined by titration with a standard sodium tetraphenylborate solution. In a 50 mL glass-stoppered tube, 15 mL of Na_nH_i1_n, UO₂²⁺ and sodium carbonate aqueous mixture solution were mixed. After 15 mL of MTA+Cl- chloroform solution was added, the mixture was shaken for 10 min at 400 strokes per min at about 25 °C. The extraction was not affected by further shaking, which indicates that equilibrium had been attained within 10 min. Then the tube was centrifuged for 3 min at 2000 rpm to separate both phases. An aliquot of the aqueous phase was taken to measure UO₂²⁺ by the Arsenazo-III absorption method. 8 UO₂²⁺ in the chloroform phase was back extracted with 2M H₂SO₄ and determined as above. The extraction (%E) was calculated by the percent %E={([UO_2^{2+}]_{w,i}-[UO_2^{2+}]_{w,e})/[UO_2^{2+}]_{w,i}}x100, equation where $[UO_2^{2+}]_{w,i}$ and $[UO_2^{2+}]_{w,e}$ are the initial and equilibrium concentrations of UO22+ in the aqueous phase. Figure 1. Effect of pH on the extraction of UO₂²⁺ with H_j1_nⁿ-at about 25 °C. \triangle :H₂1₄⁴⁻, \bigcirc :H₂1₆⁶⁻, ●:H₄1₈⁸⁻, [UO₂²⁺]_{w,i}= 2.01×10^{-4} M, [H_j1_nⁿ⁻]_{w,i}= 1.09×10^{-3} M, [Na₂CO₃]_{w,i}= 2.0×10^{-3} M, [MTA+Cl-]_{0,i}= 1.0×10^{-2} M(for H₂1₄⁴⁻ and H₂1₆⁶⁻ extractions), 1.5×10^{-2} M(for H₄1₈⁸⁻ extractions), volume of aqueous and organic phases = 15 mL each. Figure 1 shows %E for the extractions with $H_j \mathbf{1_n}^{n_*}$ as a function of pH. No extraction of $UO_2^{2^+}$ was observed with $H_2 \mathbf{1_4}^{4^-}(\triangle)$. This result should be due to the weak reactivity of $H_2 \mathbf{1_4}^{4^-}$ with $UO_2^{2^+}$. On the other hand, the extraction by $H_2 \mathbf{1_6}^{6^-}(\bigcirc)$ starts at pH 5.5 and the value of %E increases quickly with an increase in pH, to reach 100% at pH=7. This extraction curve seems to follow that for the complex formation of $H_2 \mathbf{1_6}^{6^-}$ with $UO_2^{2^+}$. The extraction of $UO_2^{2^+}$ by $H_4 \mathbf{1_8}^{8^-}(\blacksquare)$ starts at pH lower than 2.5 and reaches 100% at pH 4.0. The extraction curve also resembles that for the formation of $UO_2^{2^+}$ - $H_4 \mathbf{1_8}^{8^-}$ complexes.³ 1276 Chemistry Letters 1999 **Figure 2.** Effect of $H_j \mathbf{1_n^{n-}}$ concentration on the extraction of UO_2^{2+} at about 25 °C. $\bigcirc:H_2\mathbf{1_6^{6-}}$, $\bullet:H_4\mathbf{1_8^{8-}}$, $[UO_2^{2+}]_{w,i}=2.51\times10^{-4}$ M, $[MTA+Cl^-]_{0,i}=1.0\times10^{-2}$ M and pH=9.4 for $H_2\mathbf{1_6^{6-}}$ extractions, $[MTA+Cl^-]_{0,i}=1.5\times10^{-2}$ M and pH=8.8 for $H_4\mathbf{1_8^{8-}}$ extractions, volume of aqueous and organic phases = 15 mL each. Figure 3. Effect of MTA+ concentration on the extraction of UO₂²⁺ at about 25 °C. ○:H₂1₆⁶⁻, ●:H₄1₈⁸⁻, [UO₂²⁺]_{w,i}= 7.73×10⁻⁴ M, [H₂1₆⁶⁻]_{w,i}=5.20×10⁻⁴ M, pH=9.4 for H₂1₆⁶⁻ extractions, [UO₂²⁺]_{w,i}=1.27×10⁻³ M, [H₄1₈⁸⁻]_{w,i}=5.72×10⁻⁴ M, pH=8.7 for H₄1₈⁸⁻ extractions, volume of aqueous and organic phases = 15 mL each. To study the composition of the extracted species, the extractions of $UO_2^{2^+}$ were performed by changing the concentrations of $H_i \mathbf{1_n}^{n^-}$ and MTA⁺Cl⁻. Figure 2 indicates changes in %E for the extraction by $H_2 \mathbf{1_6}^{6^+}$ (\bigcirc) and by $H_4 \mathbf{1_8}^{8^-}$ (\bigcirc) as a function of the initial concentration ratio, $[H_j \mathbf{1_n}^{n^-}]_{w,i}/[UO_2^{2^+}]_{w,i}$. There are clear abrupt changes at 1.0 in the extraction curve for $H_2 \mathbf{1_6}^{6^+}$ and at 0.50 for $H_4 \mathbf{1_8}^{8^-}$, respectively. It is obvious, thus, that UO_2^{2+} is extracted by chloroform through formation of 1:1 complex with $H_2I_6^{6-}$, but 2:1 complex with $H_4I_8^{8-}$. Figure 3 shows the amount of UO_2^{2+} extracted as a function of the initial concentration of TMA⁺ in terms of $[TMA^+]_{o,i}/[H_iI_n^{n-}]_{w,i}$. Clear abrupt changes in slope can also been seen at 9 for $H_2I_6^{6-}(\bigcirc)$ and 11.0 for $H_4I_8^{8-}(\blacksquare)$. These curves show that 9 and 11 moles of TMA⁺ are used for the extraction of each complex. We reported^{3,4} that the compositions of the main uranyl complexes of super uranophiles are 1:1 for $H_2\mathbf{1}_6^{6-}$, $[(UO_2^{2+})(\mathbf{1}_6^{8-})(H^+)_3]^{9-}$ and 2:1 for $H_4\mathbf{1}_8^{8-}$, $[(UO_2^{2+})_2(\mathbf{1}_8^{12-})(H^+)_3]^{11-}$. From the compositions of the extracted species, it can also be concluded that UO_2^{2+} forms water-soluble 1:1 and 2:1 complex anions with the above super-uranophiles, respectively, then the resultant complexes associate with 9 and 11 moles of MTA⁺ and are dissolved in chloroform as shown in Eqs.2 and 3. $$\begin{array}{ll} UO_{2}^{2^{+}} \ _{w}^{+} \ H_{2} I_{6}^{6^{-}} \ _{w}^{+} \ 9 TMA^{+}Cl_{o}^{-} \ \rightleftarrows \\ & [(UO_{2}^{2^{+}})(I_{6}^{8^{+}})(H^{+})_{.3}](MTA^{+})_{9,o}^{+} 5 HCl_{w}^{+} 4 Cl_{w}^{-} & (2) \\ 2 UO_{2}^{2^{+}} \ _{w}^{+} \ H_{4} I_{8}^{8^{-}} \ _{w}^{+} \ 11 TMA^{+}Cl_{o}^{-} \ \rightleftarrows \\ & [(UO_{2}^{2^{+}})_{2}(I_{8}^{12^{-}})(H^{+})_{.3}](MTA^{+})_{11,o}^{+} 7 HCl_{w}^{+} 4 Cl_{w}^{-} & (3) \end{array}$$ Since complex formation of UO_2^{2+} with super uranophiles is highly selective, ^{1,4} it is expected that the proposed extraction system can selectively extract UO_2^{2+} . ## References - S. Shinkai, S. Mori, H. Koreishi, T. Tsubaki, and O. Manabe, J. Am. Chem. Soc., 108, 2409 (1986). - 2 S. Shinkai, S. Mori, T. Tsubaki, T. Sone, and O. Manabe, *Tetrahedron Lett.*, **25**, 5315 (1984). - 3 M. Sonoda, K. Hayashi, M. Nishida, D. Ishii, and I. Yoshida, Anal. Sci., 14, 493 (1998). - 4 M. Sonoda, M. Nishida, D. Ishii, and I. Yoshida, *Anal. Sci.*, to be published. - 5 M. Nishida, M. Sonoda, D. Ishii, and I. Yoshida, Bull. Chem. Soc. Jpn., 71, 2845 (1998). - 6 M. Nishida, M. Sonoda, D. Ishii, and I. Yoshida, Chem. Lett., 1998, 289. - 7 M. Nishida, M. Sonoda, D. Ishii, and I. Yoshida, Bunseki Kagaku, 47, 853 (1998).